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Abstract. We present a limited-memory method for maximum-likelihood-based state estimation
of hidden Markov models. We reduce the memory storage requirements by expressing the optimal
states as a function of checkpoints bounding a shooting interval. All states can then be recomputed
as needed from a recursion stemming from the optimality conditions. The matching of states at
checkpoints are imposed, in a multiple shooting fashion, as constraints on the optimization problem,
which is solved with an augmented Lagrangian method. We prove that for nonlinear systems un-
der certain assumptions the condition number of the Hessian matrix of the augmented Lagrangian
function is bounded above with respect to the number of shooting intervals. Hence the method is
stable for increasing time horizon. The assumptions include satisfying the observability conditions of
the linearized system on a shooting interval. We also propose a recursion-based gradient evaluation
algorithm for computing the gradient, which in turn allows the algorithm to proceed by storing at
any time only the checkpoints and the states on a shooting interval. We demonstrate our findings
with simulations in different regimes for Burgers’ equation.
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1. Introduction. Data assimilation is the process of estimating the underlying
states of a physical system based on reconciliation of observations and physical laws
governing its evolution [4, 6, 13]. The setup is most commonly described by a hidden
Markov model with stochastic normal model error and measurement noise [13],

x0 = xB + ηB , xj+1 = Mj(xj) + ηj , yj = Hj(xj) + εj ,(1.1)

ηB ∼ N (0J , QB), ηj ∼ N (0J , Qj) εj ∼ N (0L, Rj).(1.2)

where xj ∈ RJ , yj ∈ RL. The mapping Mj(·) : RJ → RJ models the physical law
governing the evolution of the system dynamics, typically discretizations of partial
differential equations. We assume Mj(·) is at least twice continuously differentiable.
The random variable ηj models the stochastic model error and has a normal distri-
bution with mean 0J and covariance Qj ∈ RJ×J . The random variable ηB models
the initial state as a normal distribution with mean xB and covariance QB ∈ RJ×J .
The function Hj(·) : RJ → RL maps the states into observed quantities, whereas εj
models measurement error that has mean 0L and covariance Rj ∈ RL×L. We also
assume all covariance matrices to be positive definite.

With these definitions, we are interested in the state estimation problem [23]:
We are given the background mean state xB ; evolution function Mj(·); measurement
operator Hj(·); measured quantities yj ; and covariance matrices for background error,
QB , model error, Qj for j = 0, 1, . . . , N − 1, and measurement error, Rj for j =
0, 1, . . . , N at N + 1 equally spaced time points. We want to determine the state
trajectory x0, x1, . . . , xN that best explains the data yj under these assumptions.
The problem is also named data assimilation or 4DVar [4, 6, 13, 17] in atmospheric
sciences applications, when Mj(·) is obtained from the discretization of 3D dynamics.
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In particular, we will focus on the circumstance where we are memory-limited, and
thus we may be unwilling to simultaneously store the entire trajectory vector because
of the O(JN) memory requirements.

In the limiting case of Qj = 0J×J , and thus ηj = 0J , the system is called
“strongly constrained” in the sense that every state is determined by the previous
one and all states are functions of only the initial state x0. However, many sources
(e.g., discretization and parametrization) can contribute to model errors that have
non-negligible effects [5, 24, 25]. The explicit inclusion of the model error term in the
physical evolution [8, 19, 20] leads precisely to (1.1)–(1.2). This paradigm is called
a hidden Markov model [21, 22], and it is one of the most studied state estimation
paradigms [13]. It has generated a large number of methods to solve it, including
Kalman filters, extended Kalman filters, and particle methods [7, 13]. However, such
methods may not be suitable to the kind of problems described here because of reliance
on linearity of Mj(·) (Kalman filters) [12]; memory that increases superlinearly with
the dimension of x (extended Kalman filters) [10]; and slow convergence, particularly
when interested primarily in best estimates (particle methods) [3].

In this work we focus on variational methods: methods that aim to express the
minus loglikelihood of the hidden Markov model (1.1)–(1.2) and then minimize it with
deterministic methods, such as limited-memory BFGS [18]. The objective function of
that minimization is the following weakly constrained function [15, 16, 25, 26, 27]:

Γ(x0:N ) =
1

N

N−1∑
j=0

(γj(xj) + φj (xj , xj+1)) + γN (xN )

 ,(1.3)

where φj(xj , xj+1) = (xj+1 −Mj(xj))
T
Q−1
j (xj+1 −Mj(xj)) /2, 0 ≤ j ≤ N − 1

γj(xj) = (yj −Hj(xj))
T
R−1
j (yj −Hj(xj)) /2, 1 ≤ j ≤ N

γ0(x0) = (x0 − xB)TQ−1
B (x0 − xB)/2 + (y0 −H0(x0))

T
R−1

0 (y0 −H0(x0)) /2.

The best estimation of the states x0, x1, . . . , xN then amounts to minimizing (1.3),
which is equivalent to maximizing the likelihood of the hidden Markov model. In the
strongly constrained case, only x0 is a free variable. Using adjoint approaches for
the minimization of (1.3) in that limiting case with a checkpointing strategy results
in storage requirements of about O(J log(N)) with a recomputation effort that is
relatively bounded with J and N [9]. In the presence of model error, however, it is
no longer possible to constrain the states by using model propagation, and hence the
storage is N + 1 fold larger since all states x0, x1, . . . , xN are free variables. In the
case of a large J or N , which we are increasingly approaching in atmospheric sciences
as more refined physics models are coming online, the sheer amount of storage makes
applications to real systems with higher resolution out of practical reach.

To this end, we recently [1] proposed to reduce memory by using the constraints
of the optimality conditions themselves.

0 = ∇x0φ0(x0, x1) +∇x0γ0(x0)(1.4)

0 = ∇xjφj(xj , xj+1) +∇xjφj−1(xj−1, xj) +∇xjγj(xj), 1 ≤ j ≤ N(1.5)

0 = ∇xN
φN−1(xN−1, xN ) +∇xN

γN (xN )(1.6)

Enforcing optimality conditions (1.4) and (1.5) gives a recursion for computing x1 in
terms of x0 and xi+1 in terms of xi and xi−1 for 1 ≤ i ≤ N − 1. Hence each state
effectively is reduced to a function of just the initial state by using the optimality
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conditions as constraints; we call this recursively computable function λi(x0), i =
1, 2, . . . , N . The objective function then becomes

(1.7) Γ̂(x0) =
1

N

(
N−1∑
i=0

γi (λi(x0)) + φi (λi(x0), λi+1(x0)) + γN (λN (x0))

)
.

Quasi-Newton methods such as L-BFGS can be used to minimize (1.7).
The recursive nature of the method opens the door for instability when the time

horizon increases or under certain model parameters, as also discussed in [1]. That
is, the recursion may exhibit rapid exponential increase of the solution, resulting in
numerical overflow. Numerical experiments show that in the presence of large model
error, large observation gap, large time step, or increased time horizon, the method
may encounter such stability issues and fail to progress. The method that minimizes
(1.7) in [1] uses essentially a single shooting idea. Each initial state x0 determines
the whole trajectory through λi(x0), and the optimality is found by satisfying the
optimality condition at the end ∇xN

φN−1 + ∇xN
γN = 0. We propose a multiple

shooting approach for which multiple restart points across the whole horizon are used.
We call such restart points checkpoints, given their identical functionality in adjoint
calculations [9]. Each checkpoint sequence determines a “shooting” segment of the
trajectory, and optimality is achieved by both minimizing the resulting function and
matching at each checkpoint. To compute the function and its gradients on a shooting
interval, we use a recursion like (1.5) restarted at the last checkpoint; a “shooting”
approach. At the cost of modestly increased storage, we expect the method to improve
stability by reducing the length of recursion on each segment.

The rest of this article is organized as follows. Section 2 describes the low-
memory multiple shooting method and proves the consistency of the solution with
the full-memory data assimilation method. In Section 3, we show that for nonlin-
ear systems within a certain regime, the condition number of the multiple shooting
method is bounded above with respect to the number of shooting intervals. Section
4 describes a recursive limited-memory algorithm to evaluate the descent direction of
the resulting optimization problem in preparation for numerical experiments. Section
5 presents numerical experiments that implement the multiple shooting method for
Burgers’ equation under different parameter settings. Improvements and limitations
are discussed in the conclusion.

2. Multiple shooting approach. We note that the recursion defining xj+1

through (1.5) is a two-term recursion; therefore a checkpointing approach here would
need two consecutive states. In the following, d pairs of checkpoints {xP1−1, xP1 ,
. . . , xPd−1, xPd

} ∈ R2dJ are equally spaced across the entire state. To simplify the
discussion, we assume that the number of states on each shooting interval is constant;
we let k = N/(d+1) be that number. We also denote P0 = 0 and Pd+1 = N . For each
shooting interval [xPi

, xPi+1
] we define by Γ̂i the component of the objective function

(1.3) attached to that interval:

Γ̂0(x0) =
1

N

P1−1∑
j=0

γj(x̃j(x0)) + φj(x̃j(x0), x̃j+1(x0))

 ,(2.1a)

Γ̂i(xPi−1, xPi
) =

1

N

(
Pi+1−1∑
j=Pi

γj(x̃j(xPi−1, xPi
))(2.1b)
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+φj(x̃j(xPi−1, xPi
), x̃j+1(xPi−1, xPi

))

)
, 1 ≤ i ≤ d− 1

Γ̂d(xPd−1, xPd
) =

1

N

(
N−1∑
j=Pd

γk(x̃j(xPi−1, xPi))(2.1c)

+φj(x̃j(xPi−1, xPi
), x̃j+1(xPi−1, xPi

)) + γN (x̃N (xPd
))

)
.

The mappings x̃j(xPi−1, xPi
) are defined implicitly from the optimality conditions

(1.4) and (1.5). This step is possible as soon as∇xjφ(xj , xj+1) = ∇xjMj(xj)Q
−1
j (xj+1−

Mj(xj)) is invertible in xj+1. This is equivalent to requiring that ∇xj
Mj(xj)Q

−1
j be

an invertible matrix. Since Mj(·) are propagating operators, they can be assumed to
be invertible from properties of dynamical systems (see also the discussion at the be-
ginning of [1, §3]). Since the covariance matrix Qj is assumed to be positive definite,
it immediately follows that the recursion (1.5) is uniquely solvable in xj+1.

At points immediately following the checkpoints, the mappings x̃Pi+1(xPi−1, xPi
)

are the solution of the optimality conditions (1.4) and (1.5) at checkpoint Pi:

0 = ∇x0
γx0

(x0) +∇x0
φP0

(x0, x̃1)(2.2)

0 = ∇xPi
φPi−1

(xPi−1, xPi
) +∇xPi

γPi
(xPi

) +∇xPi
φPi

(xPi
, x̃Pi+1),(2.3)

for i = 1, . . . , d. At all other points, x̃j(xPi−1, xPi) is defined recursively from
x̃j−1(xPi−1, xPi) and x̃j−2(xPi−1, xPi) by using the optimality conditions (1.5) as
follows:

0 = ∇xjφj−1(x̃j−1, x̃j) +∇xjγj(x̃j) +∇xjφj(x̃j , x̃j+1),(2.4)

for Pi < j ≤ Pi+1 − 1, i = 0, . . . , d. Under model (1.1), the recursions (2.2)–(2.4) can
be written at points immediately following checkpoints as

x̃1(x0) = M0(x0) +Q0∇−TM0(x0)Q−1
B (x0 − xB)(2.5)

− Q0∇−TM0(x0)∇TH0(x0)R−1
0 (y0 −H0(x0)),

x̃Pi+1(xPi
, xPi−1) = MPi

(xPi
) +QPi

∇−TMPi
(xPi

)Q−1
Pi−1(xPi

−MPi−1(xPi−1))(2.6)

− QPi
∇−TMPi

(xPi
)∇THPi

(xPi
)R−1

Pi
(yPi
−HPi

(xPi
)),

for i = 1, 2, . . . , d. At all other points between checkpoints we obtain

x̃j+1(x̃j , x̃j−1) = Mj(x̃j) +Qj∇−TMj(x̃j)Q
−1
j−1(x̃j −Mj−1(x̃j−1))(2.7)

− Qj∇−TMj(x̃j)∇THj(x̃j)R
−1
j (yj −Hj(x̃j)).

Repeated use of (2.7) together with (2.5) and (2.6) results in computing all mappings
x̃j(xPi−1, xPi

)
Then, by gathering the objective function components (2.1) and by imposing

matching constraints at the checkpoint pairs, we obtain the following multiple shoot-
ing optimization problem.

min Γ̃(x0, xP1−1, xP1
, . . . , xPd−1, xPd

)
∆
= Γ̂0(x0) +

d∑
i=1

Γ̂i(xPi−1, xPi
)(2.8a)
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s.t. c1(x) = xP1
− x̃P1

(x0) = 0(2.8b)

g1(x) = xP1−1 − x̃P1−1(x0) = 0(2.8c)

ci+1(x) = xPi+1
− x̃Pi+1

(xPi−1, xPi
) = 0, 1 ≤ i ≤ d− 1(2.8d)

gi+1(x) = xPi+1−1 − x̃Pi+1−1(xPi−1, xPi
) = 0, 1 ≤ i ≤ d− 1(2.8e)

The Lagrangian associated with the constraint problem (2.8) is

(2.9) L(x, λ, ψ) = Γ̃(x)−
d∑
i=1

λTi ci(x)−
d∑
i=1

ψTi gi(x),

where x = (x0, xP1−1, xP1
, . . . , xPd−1, xPd

) and λi ∈ RJ , ψi ∈ RJ are Lagrange multi-
pliers for the equality constraints ci(x) = 0 and gi(x) = 0, i = 1, 2, . . . , d.

We also define the full memory form of the objective functions for each shooting
interval as follows:

(2.10)

Γi(xPi:Pi+1) =
1

N

Pi+1−1∑
j=Pi

γj(xk) + φj(xj , xj+1)

 , 0 ≤ i ≤ d,

Γd(xPd:N ) =
1

N

N−1∑
j=Pd

γj(xj) + φj(xj , xj+1) + γN (xN )

 .

We now define a list of symbols frequently used in the rest of the article.
Definition 2.1. For 1 ≤ i ≤ d and 0 ≤ j ≤ N , define
(a)

βj(xj , xj+1) = ∇xj
γj(xj) +∇xj

φj(xj , xj+1), 0 ≤ j ≤ N − 1

αj(xj−1, xj) = ∇xj
φj−1(xj−1, xj), 1 ≤ j ≤ N

θj(xj−1, xj , xj+1) = αj(xj−1, xj) + βj(xj , xj+1), 1 ≤ j ≤ N − 1

θ0(x0, x1) = β0(x0, x1); θN (xN−1, xN ) = αN (xN−1, xN ) +∇xN
γN (xN )

Note that for Γi defined in (2.10), we have(
∂Γi

∂(xPi:Pi+1
)

)T
=
[
βTPi

, θTPi+1, . . . , θ
T
Pi+1−1, α

T
Pi+1

]
, 0 ≤ i ≤ d− 1(

∂Γd
∂(xPd:N )

)T
=
[
βTPd

, θTPd+1, . . . , θ
T
N−1, θ

T
N

]
.

(b)

L
(0)
j (x0) = ∇x0 x̃j(x0), 0 ≤ j

L
(Pi−1)
j (xPi−1, xPi

) = ∇xPi−1
x̃j(xPi−1, xPi

), Pi − 1 ≤ j

L
(Pi)
j (xPi−1, xPi) = ∇xPi

x̃j(xPi−1, xPi), Pi − 1 ≤ j

(c) Let Λi(xPi−1, xPi) be (k+1)J×2J dimensional, and let Λ0(x0) be (k+1)J×J
dimensional matrices so that

Λi(xPi−1, xPi
) =

∂(x̃Pi:Pi+1
)

∂(xPi−1, xPi
)

=


L

(Pi−1)
Pi

(xPi−1, xPi
) L

(Pi)
Pi

(xPi−1, xPi
)

L
(Pi−1)
Pi+1 (xPi−1, xPi

) L
(Pi)
Pi+1(xPi−1, xPi

)
...

...

L
(Pi−1)
Pi+1

(xPi−1, xPi
) L

(Pi)
Pi+1

(xPi−1, xPi
)

 ,
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Λ0(x0) =
∂(x̃0:P1

)

∂(x0)
=
[
L

(0)
0 (x0)T , L

(0)
1 (x0)T , . . . , L

(0)
P1

(x0)T
]T
.

Note that the first block row of Λi is [0, IJ ] and the first block row of Λ0 is
IJ . Let L0(x0) and Li(xPi−1, xPi

) be the last two block rows respectively of
Λ0(x0) and Λi(xPi−1, xPi) so that

L0(x0) =

[
L

(0)
P1−1(x0)

L
(0)
P1

(x0)

]

Li(xPi−1, xPi) =

[
L

(Pi−1)
Pi+1−1(xPi−1, xPi) L

(Pi)
Pi+1−1(xPi−1, xPi)

L
(Pi−1)
Pi+1

(xPi−1, xPi) L
(Pi)
Pi+1

(xPi−1, xPi)

]
.

(d) Let Ji(xPi−1, xPi) and J0(x0) be J(k + 1)× J(k + 1) dimensional symmetric
block tridiagonal matrices defined as follows (with the arguments of β·,θ·,α·
dropped for brevity).

Ji =



∇xPi
βPi ∇xPi+1

θPi 0

∇xPi
θPi+1 ∇xPi+1

θPi+1
. . .

. . .
. . .

. . . ∇xPi+1−1
θPi+1−1 ∇xPi+1

θPi+1−1

0 ∇xPi+1−1
θPi+1

∇xPi+1
αPi+1


.

Note that Ji = ∇2Γi for 0 ≤ i ≤ d− 1, and ∇2Γd differs from Jd by only the
last diagonal block element so that (Jd)(k,k) +∇2

xN
γN = (∇2Γd)(k,k).

We now illustrate the relationship between the solution of the multiple shoot-
ing constrained optimization problem (2.8) and the solution of the full-memory data
assimilation problem (1.3)

Theorem 2.2. Let x∗0:N be a local minimizer of Γ(x0:N ) (1.3) that satisfies the
first- and second-order sufficient conditions. Let x∗ = (x∗0, x

∗
P1−1, x

∗
P1
, . . . , x∗Pd−1, x

∗
Pd

).
Then

(a) x∗ satisfies the KKT conditions of (2.8) with Lagrangian multipliers λ∗i =
−∇xPi

φPi−1(x∗Pi−1, x
∗
Pi

), ψ∗i = 0 for 1 ≤ i ≤ d.
(b) The Hessian matrix of the Lagrangian at optimality satisfies

wT∇2
xL(x∗, λ∗, ψ∗)w =

d∑
i=0

ŵTi ΛTi JiΛiŵi

+
(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)T
∇2
xN
γN

(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)
,

for w = (w1, . . . , w2d+1) ∈ R(2d+1)J , ŵi = (w2i, w2i+1), 1 ≤ i ≤ d, and
ŵ0 = w1.

(c) x∗ satisfies the second-order sufficient conditions of (2.8).
Proof. The optimality conditions (2.2)–(2.4) uniquely determine the recursion

of x̃j , 0 ≤ j ≤ N (Theorem 1 of [1]). Therefore the solution x∗0:N of (1.3) coincides
with the state propagated starting from the checkpoints by using the recursions (2.2)–
(2.4), namely, x̃j = x∗j for 0 ≤ j ≤ N . In the rest of the proof, the dependence of the
symbols defined in Definition 2.1 on the checkpoints is suppressed for brevity.
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First, we aim to verify part (a), that is, check the KKT conditions with Lagrangian
multipliers λ∗i = −∇xPi

φPi−1(x∗Pi−1, x
∗
Pi

), ψ∗i = 0 for 1 ≤ i ≤ d. Note that from the
definitions of αPi

, βPi
(Definition 2.1(a)) and optimality conditions (1.4) and (1.5),

we have that for 1 ≤ i ≤ d,

αPi
(x∗Pi−1, x

∗
Pi

) + λ∗i = 0,(2.11a)

βPi
(x∗Pi

, x∗Pi+1)− λ∗i = 0.(2.11b)

By the chain rule and from the definition of the constraints (2.8b) and (2.8c) and
Definitions 2.1(a) and (c), the first-order derivatives are

∇x0
L(x∗, λ∗, ψ∗) = ∇x0

Γ̂0(x∗0)−∇x0
c1(x∗)λ∗1 −∇x0

g1(x∗)ψ∗1(2.12)

=

(
∂(x̃0:P1)

∂(x0)

)T
∂Γ0

∂(x0:P1
)

+ L
(0)
P1

T
λ∗1 + L

(0)
P1−1

T
ψ∗1

= ΛT0 V0 + L
(0)
P1−1

T
ψ∗1 , where

V0 :=


θ0(x∗0, x̃1)

θ1(x̃0, x̃1, x̃2)
...

θP1−1(x̃P1−2, x̃P1−1, x̃P1
)

αP1
(x̃P1−1, x̃P1

) + λ∗i

 .(2.13)

Optimality conditions (1.4), (1.5) and (2.11a) imply V0 = 0, and hence we have
∇x0

L(x∗, λ∗, ψ∗) = 0.
For 1 ≤ i ≤ d − 1, from the definition of the constraints (2.8d) and (2.8e) and

Definitions 2.1(a) and (c), we obtain that

∇(xPi−1,xPi
)L(x∗, λ∗, ψ∗) = ∇(xPi−1,xPi

)Γ̂i(x
∗
Pi−1, x

∗
Pi

)(2.14)

−
[
∇xPi−1

gi(x
∗)ψ∗i +∇xPi−1

ci+1(x∗)λ∗i+1 +∇xPi−1
gi+1(x∗)ψ∗i+1

∇xPi
ci(x

∗)λ∗i +∇xPi
ci+1(x∗)λ∗i+1 +∇xPi

gi+1(x∗)ψ∗i+1

]

=

(
∂(x̃Pi:Pi+1

)

∂(xPi−1, xPi
)

)T
∂Γi

∂(xPi:Pi+1
)
−

ψ∗i − L(Pi−1)
Pi+1−1

T
ψ∗i+1 − L

(Pi−1)
Pi+1

T
λ∗i+1

λ∗i − L
(Pi)
Pi+1−1

T
ψ∗i+1 − L

(Pi)
Pi+1

T
λ∗i+1


= ΛTi Vi −

ψ∗i − L(Pi−1)
Pi+1−1

T
ψ∗i+1

−L(Pi)
Pi+1−1

T
ψ∗i+1

 , where

Vi :=


βPi

(x∗Pi
, x̃Pi+1)− λ∗i

θPi+1(x̃Pi
, x̃Pi+1, x̃Pi+2)

...
θPi+1−1(x̃Pi+1−2, x̃Pi+1−1, x̃Pi+1

)
αPi+1

(x̃Pi+1−1, x̃Pi+1
) + λ∗i+1

 .(2.15)

Optimality conditions (1.4) and (1.5) and (2.11a) and (2.11b) imply that Vi = 0, and
hence we have ∇(xPi−1,xPi

)L(x∗, λ∗, ψ∗) = 0.
For the last shooting interval, from the definition of the constraints (2.8d) and

(2.8e) and Definitions 2.1(a) and (c), we obtain that

∇(xPd−1,xPd
)L(x∗, λ∗, ψ∗) = ∇(xPd−1,xPd

)Γ̂d(x
∗
Pd−1, x

∗
Pd

)(2.16)
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−
[
∇xPd−1

gd(x
∗)ψ∗d

∇xPd
cd(x

∗)λ∗d

]
= ΛTd Vd −

[
ψ∗d
0

]
, where

Vd :=


βPd

(x∗Pd
, x̃Pd+1)− λ∗d

θPd+1(x̃Pd
, x̃Pd+1, x̃Pd+2)

...
θN−1(x̃N−2, x̃N−1, x̃N )

θN (x̃N−1, x̃N )

 .(2.17)

Optimality conditions (1.5) and (1.6) and (2.11b) imply that Vd = 0, and hence we
have ∇(xPd−1,xPd

)L(x∗, λ∗, ψ∗) = 0. This completes the proof of part (a).
We now derive the Hessian matrix. For 1 ≤ i ≤ d, directly applying the chain rule

to (2.12) and (2.14), we note that Vi = 0 for 0 ≤ i ≤ d−1 give that∇2
x0
L(x∗, λ∗, ψ∗) =

ΛT0 J0Λ0 and that ∇2
(xPi−1,xPi

)L(x∗, λ∗, ψ∗) = ΛTi JiΛi for 1 ≤ i ≤ d− 1.

For the last shooting interval, applying the chain rule to (2.16) and from Defini-
tions 2.1(a) and (d) and the fact that Vd = 0, we obtain that

∇2
(xPd−1,xPd

)L(x∗, λ∗, ψ∗) = ΛTd JdΛd +

[
L

(Pd−1)
N

T

L
(Pd)
N

T

]
∇2
xN
γN

[
L

(Pd−1)
N L

(Pd)
N

]
.

Since the constraints are separable, there are no cross terms in the Hessian matrix.
For w = (w1, . . . , w2d+1) ∈ R(2d+1)J , we define ŵi = (w2i, w2i+1) for 1 ≤ i ≤ d

and ŵ0 = w1. Then we have that

(2.18)
wT∇2

xL(x∗, λ∗, µ)w =

d∑
i=0

ŵTi ΛTi JiΛiŵi

+
(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)T
∇2
xN
γN

(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)
.

This completes the proof of part (b).
The critical cone at optimality, from Definition 2.1(d) and (2.8d) and (2.8e), is

C(x∗, λ∗, ψ∗) = {w ∈ R(2d+1)J : ∇ci(x∗)w = 0,∇gi(x∗)w = 0, 1 ≤ i ≤ d}(2.19)

= {ŵ ∈ R(2d+1)J : ŵi = Li−1ŵi−1, 1 ≤ i ≤ d}.

We define the vector u ∈ R(N+1)J by

uj =

{
L

(0)
j w1, 0 ≤ j ≤ P1

L
(Pi−1)
j w2i + L

(Pi)
j w2i+1, Pi + 1 ≤ j ≤ Pi+1, 1 ≤ i ≤ d

so that for 0 ≤ i ≤ d,

(2.20) Λiŵi =
[
wT2i+1, u

T
Pi+1, . . . u

T
Pi+1

]T
.

From Definition 2.1(c) the first block row of Λi is [0, IJ ] for 1 ≤ i ≤ d, and IJ for i = 0.
Now we consider w ∈ C(x∗, λ∗, ψ∗) and w 6= 0. This implies that w1 6= 0; and since

u0 = w1 6= 0, we have that u 6= 0. Note that since w ∈ C(x∗, λ∗, ψ∗), L
(Pi−1)
Pi

= 0,

and L
(Pi)
Pi

= IJ , we have from (2.19) that uPi
= w2i+1, for 1 ≤ i ≤ d. Substituting this

equation in (2.18), using (2.20), using the expression of Ji from Definition 2.1(d), and
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using the fact that from Definition 2.1(a) we have that ∇xPi
βPi

+∇xPi
αPi

= ∇xPi
θPi

for 1 ≤ i ≤ d, we obtain that

wT∇2
xL(x∗, λ∗, ψ∗)w = uT0∇x0

θ0u0 + uT0∇x1
θ0u1

+

N−1∑
j=1

(uTj ∇xj−1
θjuj−1 + uTj ∇xj

θjuj + uTj ∇xj+1
θjuj+1)

+ uTN∇xN−1
θNuN−1 + uTN∇xN

θNuN = uT
(
∇2
x0:N

Γ(x∗0:N )
)
u > 0.

This completes the proof of part (c).

3. Stability analysis. The constrained optimization problem (2.8) is now solved
with an augmented Lagrangian method. From the Lagrangian function (2.9) and using
the notations of (2.8), we define the augmented Lagrangian function.

(3.1)

LA(x, λ, ψ, µ) = Γ̃(x)−
d∑
i=1

λTi ci(x)−
d∑
i=1

ψTi gi(x)+
µ

2

d∑
i=1

(
ci(x)T ci(x) + gi(x)T gi(x)

)
Here µ > 0 is the penalty parameter that helps enforce feasibility. In the rest of this
work we assume µ is fixed but large enough so that when λ∗ and ψ∗ are the Lagrange
multipliers of (2.8), the solution x∗ of (2.8) is a local minimizer of (3.1). Such a µ > 0
exists from augmented Lagrange theory [18] and Theorem 2.2.

In this section we investigate the condition number of the Hessian matrix for LA
with respect to the number of shooting intervals. In ideal circumstances, the condition
number would be bounded above by a constant and thus would prevent exponential
growth of the solution in time, which is the signature of instability discussed in §1.
Our aim is thus to identify under what circumstances this favorable situation can
occur.

For this analysis we use several simplifications to our approach. While our in-
vestigations have indicated that similar results can be obtained without making the
simplifications, leaving them out would significantly complicate and extend the anal-
ysis. We thus keep the number of time points in each shooting interval fixed at k,
and we use for all d shooting intervals a fixed time step ∆t. Since k is fixed, d grows
linearly with N . We consider a constant covariance matrix for model error Q and
observation error R for all time steps. The observation mapping is time-dependent
linear; that is, Hi(xi) = Bixi for all 0 ≤ i ≤ N and some Bi ∈ RL×J . Note that
we allow observation gaps in time, which can be modeled by setting some Bi and the
respective observations to 0. Theorem 2.2(b), definitions of the constraints (2.8b)–
(2.8e) and of the critical cone (2.19), and Definition 2.1(c) imply that the Hessian for
LA at optimality satisfies

wT∇2
xLA(x∗, λ∗, ψ∗, µ)w =

d∑
i=0

ŵTi ΛTi JiΛiŵi + µ

d∑
i=1

‖ŵi − Li−1ŵi−1‖2(3.2)

+
(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)T
BTNR

−1BN

(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)
for any w = (w1, . . . , w2d+1) ∈ R(2d+1)J , where we denote ŵ0 = w1, ŵi = (w2i, w2i+1)
for 1 ≤ i ≤ d.
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We now introduce the definition of the observability matrix for each shooting
interval, which is based on the standard one for the linearized system on a given
system trajectory [11].

Definition 3.1. For each 0 ≤ i ≤ d, Pi ≤ j, denote
∏j
l=Pi
∇Ml(xl) =

∇Mj(xj)∇Mj−1(xj−1) . . .∇MPi
(xPi

). Define

CTi (x) =

BTPi
,
(
BPi+1∇MxPi

(xPi
)
)T
, . . . ,

(
BPi+k−2

Pi+k−3∏
l=Pi

∇Ml(xl)

)T
as the observability matrix for the (i+1)th shooting interval.

For our work, the importance of the observability condition is that it will ensure
that the objective function of (1.3) when applied to the linearized system is positive
definite on one shooting interval.

Lemma 3.2. Ci(x) being full rank is equivalent to

Q(w) :=

Pi+k−2∑
j=Pi

(
(wj+1 −∇Mj(xj)wj)

T
Q−1 (wj+1 −∇Mj(xj)wj) + wTj B

T
j R
−1Bjwj

)
> 0

for any 0 6= w ∈ RkJ and 0 ≤ i ≤ d.
Proof. Suppose there exists 0 6= s0 ∈ RJ such that Cis0 = 0. Then we define

s = (sPi
, . . . , sPi+k−1) ∈ RkJ such that sPi

= s0, sPi+j =
∏Pi+j−1
l=Pi

∇Ml(xl)s0 for
1 ≤ j ≤ k− 1. Note that the assumption Cis0 = 0 and the definition of s imply that

(3.3)

0 = BPis0 = BPisPi , 0 = BPi+j

Pi+j−1∏
l=Pi

∇Ml(xl)s0 = BPi+jsPi+j , ∀1 ≤ j ≤ k−2.

Then, (3.3) and the definition of s give that Q(s) = 0. Note that s 6= 0 since s0 6= 0.
On the other hand, suppose Q(s) = 0 for some 0 6= s = (sPi

, . . . , sPi+k−1) ∈ RkJ .
Then Bjsj = 0 and sj+1 = ∇Mj(xj)sj for Pi ≤ j ≤ Pi + k − 2. Then we have

(3.4) 0 = BPisPi , 0 = BPi+j

Pi+j−1∏
l=Pi

∇Ml(xl)sPi , ∀1 ≤ j ≤ k − 2.

Then, (3.4) implies that CisPi = 0. Note that sPi 6= 0 because otherwise s = 0.

A full-rank result holds for the Jacobian matrix of the recursion.
Lemma 3.3. Λi(xPi−1, xPi) is full rank for 1 ≤ i ≤ d,
Proof. Adapting optimality recursion (2.6) to our simplified model gives

x̃Pi+1 = MPi(xPi) +Q∇−TMPi(xPi)B
T
Pi
R−1 (BPixPi − yPi)

+ Q∇−TMPi
(xPi

)Q−1 (xPi
−MPi−1(xPi−1)) .

and it implies L
(Pi−1)
Pi+1 =

∂x̃Pi+1

∂xPi−1
= −Q∇−TMPi

(xPi
)Q−1∇MPi−1(xPi−1), which is

invertible. Since the first block row of Λi(xPi−1, xPi
) is (0, I) and L

(Pi−1)
Pi+1 is the

(2,1)th block, Λi(xPi−1, xPi
) is full rank.
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In addition to observability on one shooting interval, we will make slightly stronger
assumptions than the ones implied by Lemmas 3.2 and 3.3. That is, we will assume
that those bounds hold uniformly with the shooting interval index i.

Assumption 3.4. There exist γk > 0 and ρk > 0 dependent on k but not on i,
or d, such that for any N > 0, we have the following.

(a) The observability matrices Ci(x
∗) are full rank for 0 ≤ i ≤ d.

(b) Under (a),

Pi+k−2∑
j=Pi

((
wj+1 −∇Mj(x

∗
j )wj

)T
Q−1

(
wj+1 −∇Mj(x

∗
j )wj

)
+ wTj B

T
j R
−1Bjwj

)
≥ γk‖w‖2

for all 0 ≤ i ≤ d, w = (wPi , . . . , wPi+k−1) ∈ RkJ .
(c) λmin(Λi(x

∗
Pi−1, x

∗
Pi

)TΛi(x
∗
Pi−1, x

∗
Pi

)) ≥ ρk for all 1 ≤ i ≤ d.
The second set of assumptions characterizes the system, states, and observations

as follows.
Assumption 3.5. For any N > 0,
(a) max0≤j≤N

(
‖x∗j‖, ‖xB‖

)
≤ C1 and max0≤j≤N ‖yj‖ ≤ C2 for some constant

C1 > 0 and C2 > 0;
(b) max0≤j≤N ‖Bj‖F ≤ b0 for some constant b0 > 0;
(c) max0≤j≤N

(
‖∇Mj(x

∗
j )‖F , ‖∇−1Mj(x

∗
j )‖F

)
≤ A for some constant A > 0;

(d) max0≤j≤N
(
‖Mj(x

∗
j )‖F

)
≤ m0 for some constant m0 > 0;

(e) max0≤j≤N ‖∇xj vec
(
∇TMj(x

∗
j )
)
‖F ≤ A1 for some constant A1 > 0.

In fact, Assumptions 3.5(d) and (e) are consequences of (a) and the fact that Mj is
at least twice continuously differentiable. We nonetheless state them as assumptions
so that the bounds we will use in the proof will have convenient references.

We now make a small nonlinearity assumption. It is shown in [1] that for s × s
matrix S and s× 1 vector u and x, we have

∇x(Su) = (uT ⊗ Is)∇xvec(S) + S∇xu.(3.5)

Here we define M
(2)
j (u) := (uT ⊗ IJ)∇xj

vec
(
∇TMj(x

∗
j )
)
. If u is not a function

of xj , then M
(2)
j (u) = ∇xj

(
∇TMj(x

∗
j )u
)
. Moreover, if the system is linear, then

M
(2)
j (u) = 0; therefore bounds on M

(2)
j (u) are bounds limiting nonlinearity. Note

that under Assumption 3.5(e), denoting C0 = A1

√
J , we have for any N > 0 that

max
0≤j≤N

‖M (2)
j (u)‖F ≤ A1‖uT ⊗ IJ‖F ≤ C0‖u‖.(3.6)

For our proof, however, we need an even sharper restriction for the nonlinearity de-
scribed below.

Assumption 3.6. There exists 0 ≤ bk < γk such that for any N > 0,

max
0≤j≤N

‖M (2)
j

(
Q−1

(
x∗j+1 −Mj(x

∗
j )
))
‖F ≤ bk,

where γk is as defined in Assumption 3.4.
Other than the observability assumption on each shooting interval, Assumptions

3.4 and 3.5 are primarily stating uniformity, and thus are only marginally stronger
than the existing assumptions. Assumption 3.6 on the other hand, puts a relatively
hard bound on how much nonlinearity we can tolerate in our analysis. At the end of
this section we will discuss the effect of this assumption and its significance.
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With these definitions and assumptions, we now proceed to the main results of our
paper. That is, we now prove that for the nonlinear system satisfying Assumptions
3.4, 3.5, and 3.6, the condition number of the Hessian matrix for the augmented
Lagrangian is bounded above. First, we derive a lower bound.

Proposition 3.7. Under Assumptions 3.4 and 3.6, for any w ∈ RkJ and ‖w‖ =
1, we have that wTJi(x

∗
Pi

)w ≥ γk − bk for 0 ≤ i ≤ d.
Proof. Referring back to Definition 2.1(a), we have that

(3.7)

∇x0
β0 = ∇TM0(x∗0)Q−1∇M0(x∗0) +BT0 R

−1B0 −M (2)
0

(
Q−1(x∗1 −M0(x∗0))

)
+Q−1

B ,

∇xj
βj = ∇TMj(x

∗
j )Q

−1∇Mj(x
∗
j ) +BTj R

−1Bj −M (2)
j

(
Q−1(x∗j+1 −Mj(x

∗
j ))
)
,

0 < j ≤ N − 1

∇xj
αj = Q−1, 1 ≤ j ≤ N, ∇xj−1

θj = −Q−1∇TMj−1(x∗j−1), 1 ≤ j ≤ N
∇xj

θj = ∇xj
αj +∇xj

βj , 0 < j < N ∇xj+1
θj = −∇TMj(x

∗
j )Q

−1, 0 ≤ j ≤ N − 1.

So for ‖w‖ = 1, referring to Definition 2.1 (d), we have

wTJi(x
∗
Pi

)w ≥
Pi+k−2∑
j=Pi

((
wj+1 −∇Mj(x

∗
j )wj

)T
Q−1

(
wj+1 −∇Mj(x

∗
j )wj

)
+ wTj B

T
j R
−1Bjwj

)

−
Pi+k−2∑
j=Pi

wTj M
(2)
j

(
Q−1

(
x∗j+1 −Mj(x

∗
j )
))
wj ,

for which equality holds for 1 ≤ i ≤ d. For i = 0, the difference between the two sides
is wT0 Q

−1
B w0, which is non-negative. By Assumption 3.4(b) we have that

Pi+k−2∑
j=Pi

((
wj+1 −∇Mj(x

∗
j )wj

)T
Q−1

(
wj+1 −∇Mj(x

∗
j )wj

)
+ wTj B

T
j R
−1Bjwj

)
≥ γk,

and by Assumption 3.6 we have that
∣∣∣∑Pi+k−2

j=Pi
wTj M

(2)
j

(
Q−1

(
x∗j+1 −Mj(x

∗
j )
))
wj

∣∣∣ ≤
bk. Thus Proposition 3.7 follows.

We now derive upper bounds in a series of lemmas.
Lemma 3.8. Under Assumption 3.5, for each 1 ≤ i ≤ d, Pi+1 ≤ j ≤ Pi+k, and

p = Pi − 1, Pi, we have that ‖L(p)
j (x∗Pi−1, x

∗
Pi

)‖F ≤ C(j−Pi+1)
p and ‖L(0)

j (x∗0)‖F ≤ Cjp,
where Cp > 1 is a constant independent of d.

Proof. For 0 ≤ i ≤ d and Pi ≤ j ≤ Pi+1 − 1, define

Fij = ∇Mj(x
∗
j )−Q∇xj

(
∇−TMj(x

∗
j )B

T
j R
−1(yj −Bjx∗j )

)
,

and for 0 ≤ i ≤ d and Pi + 1 ≤ j ≤ Pi+1 − 1, define

Gij = Q∇xj

(
∇−TMj(x

∗
j )Q

−1
(
x∗j −Mj−1(x∗j−1)

))
Kij = −Q∇−TMj(x

∗
j )Q

−1∇Mj−1(x∗j−1).

Also define

G10 = Q∇x0

(
∇−TM0(x∗0)Q−1

B (x∗0 − xB)
)
.
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Then for any 1 ≤ i ≤ d and Pi + 1 ≤ j ≤ Pi + k, from optimality recursions (2.7) and

the chain rule, the recursion of L
(Pi)
j and L

(Pi−1)
j can be written as[

L
(p)
j

L
(p)
j−1

]
=

[
Fi,j−1 +Gi,j−1 Ki,j−1

IJ 0

] [
L

(p)
j−1

L
(p)
j−2

]
,(3.8)

where p = Pi, Pi − 1. For the initial shooting interval, the recursion runs through
2 ≤ j ≤ P1 and p = 0. From (2.5), the initialization of the recursion for the initial
shooting interval is [

L
(0)
1

L
(0)
0

]
=

[
F10 +G10

IJ .

]
.(3.9)

For the other shooting intervals 1 ≤ i ≤ d, from (2.6), the recursion is initialized by

(3.10)

[
L

(Pi−1)
Pi

L
(Pi−1)
Pi−1

]
=

[
0
IJ

]
,

[
L

(Pi)
Pi

L
(Pi)
Pi−1

]
=

[
IJ
0

]
.

Now we give upper bounds for the propagation matrices. For some J × 1 vector
v(x∗j ), by differentiating both sides of v(x∗j ) = ∇TMj(x

∗
j )∇−TMj(x

∗
j )v(x∗j ) and using

equation (3.5), we have that

(3.11)
∇xj

(
∇−TMj(x

∗
j )v(x∗j )

)
= −∇−TMj(x

∗
j )M

(2)
j

(
∇−TMj(x

∗
j )v(x∗j )

)
+∇−TMj(x

∗
j )∇v(x∗j ).

Now we can give bounds to each part involved in the propagation. By equation
(3.11), Assumption 3.5, and equation (3.6), we have that

‖∇xj

(
∇−TMj(x

∗
j )B

T
j R
−1(yj −Bjx∗j )

)
‖F(3.12a)

≤ ‖∇−TMj(x
∗
j )M

(2)
j

(
∇−TMj(x

∗
j )B

T
j R
−1(yj −Bjx∗j )

)
‖F

+ ‖∇−TMj(x
∗
j )B

T
j R
−1Bj‖F ≤ C0A

2b0‖R−1‖F (C2 + b0C1) +Ab20‖R−1‖F ,
‖∇x0

(
∇−TM0(x∗0)Q−1

B (x∗0 − xB)
)
‖F(3.12b)

≤ ‖∇−TM0(x∗0)M
(2)
0

(
∇−TM0(x∗0)Q−1

B (x∗0 − xB)
)
‖F

+ ‖∇−TM0(x∗0)Q−1
B ‖F ≤ 2C0A

2‖Q−1
B ‖FC1 +A‖Q−1

B ‖F ,
‖∇xj

(
∇−TMj(x

∗
j )Q

−1
(
x∗j −Mj−1(x∗j−1)

))
‖F(3.12c)

≤ ‖∇−TMj(x
∗
j )M

(2)
j

(
∇−TMj(x

∗
j )Q

−1
(
x∗j −Mj−1(x∗j−1)

))
‖F

+ ‖∇−TMj(x
∗
j )Q

−1‖F ≤ C0A
2‖Q−1‖F (C1 +m0) +A‖Q−1‖F .

We then have that

‖Fij‖F
(3.12a)

≤ A+ ‖Q‖F
(
C0A

2b0‖R−1‖F (C2 + b0C1) +Ab20‖R−1‖F
)

:= F

‖Gij‖F
(3.12c)

≤ ‖Q‖F
(
C0A

2‖Q−1‖F (C1 +m0) +A‖Q−1‖F
)

:= G1

‖Kij‖F ≤ A2‖Q‖F ‖Q−1‖F := K

‖G10‖F
(3.12b)

≤ ‖Q‖F
(
2C0A

2‖Q−1
B ‖FC1 +A‖Q−1

B ‖F
)

:= G0.
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Let G = max (G1, G0). Then, bounding each term in the propagation relations
(3.8), (3.9), and (3.10) by its Forbenius norm, we have for 1 ≤ i ≤ d, Pi + 1 ≤ j ≤
Pi + k, and p = Pi − 1, Pi that

‖L(p)
j ‖F ≤

∥∥∥∥∥
[
L

(p)
j

L
(p)
j−1

]∥∥∥∥∥
F

≤
∥∥∥∥[Fi,j−1 +Gi,j−1 Ki,j−1

IJ 0

]∥∥∥∥
F

∥∥∥∥∥
[
L

(p)
j−1

L
(p)
j−2

]∥∥∥∥∥
F

≤
(√

J +K2 + (F +G)2
)j−Pi √

J ≤
(√

J +K2 + (F +G)2
)j−Pi+1

:= Cj−Pi+1
p ,

and for the initial shooting interval, similarly we have for 1 ≤ j ≤ P1 that

‖L(0)
j ‖F ≤

(√
J +K2 + (F +G)2

)j−1√
J + (F +G)2 ≤

(√
J +K2 + (F +G)2

)j
= Cjp.

Lemma 3.9. Under Assumptions 3.5 and 3.6 and using notations in Definition
2.1(d), for each 1 ≤ i ≤ d we have that ‖J0(x∗0)‖F , ‖Ji(x∗Pi−1, x

∗
Pi

)‖F ≤ CJ for some
CJ > 0 independent of d.

Proof. Because of the block tridiagonal structure of Ji for 0 ≤ i ≤ d, we have that

‖Ji‖F ≤
Pi+1−1∑
j=Pi+1

(
‖∇xj−1

θj‖F + ‖∇xj
θj‖F + ‖∇xj+1

θj‖F
)

+‖∇xPi
βPi
‖F + ‖∇xPi+1

θPi
‖F + ‖∇xPi+1−1

θPi+1
‖F + ‖∇xPi+1

αPi+1
‖F

(3.7)

≤
Pi+1−1∑
j=Pi+1

(
2A‖Q−1‖F + ‖Q−1‖F +A2‖Q−1‖F + b20‖R−1‖F + bk

)
+2A‖Q−1‖F + ‖Q−1‖F +A2‖Q−1‖F + b20‖R−1‖F + bk

≤ k
(
2A‖Q−1‖F + ‖Q−1‖F +A2‖Q−1‖F + b20‖R−1‖F + bk

)
:= CJ .

Proposition 3.10. For any w ∈ R(2d+1)J and ‖w‖ = 1, we have that
wT∇2

xLA(x∗, λ∗, ψ∗, µ)w ≤ Uk for some Uk > 0 independent of d.
Proof. For 0 ≤ i ≤ d, using Lemmas 3.8 and 3.9 and referring to Definition 2.1,

we have that ‖Ji‖F ‖Λi‖2F ≤ 2(k + 1)CJC
2k
p . Then, from (3.2), it follows that

wT∇2
xLA(x∗, λ∗, ψ∗, µ)w =

d∑
i=0

ŵTi ΛTi JiΛiŵi + µ

d∑
i=1

‖ŵi − Li−1ŵi−1‖2

+
(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)T
BTNR

−1BN

(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)
≤ 2(k + 1)CJC

2k
p + b20‖R−1‖FC2k

p + µ(1 + 2Ckp )2.

Defining Uk to be the last quantity above completes the proof.
We are now in a position to state and prove our main result.
Theorem 3.11. Under Assumptions 3.4, 3.5, and 3.6, the condition number of

the Hessian matrix for the augmented Lagrangian is bounded above independent of the
number of shooting intervals, d. That is,

κ
(
∇2
xLA(x∗, λ∗, ψ∗, µ)

)
≤ Uk

(γk − bk) min (ρk, 1)
.
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Proof. For any w ∈ R(2d+1)J and ‖w‖ = 1, using Proposition 3.7 and Assumption
3.4(c), we have that

wT∇2
xLA(x∗, λ∗, ψ∗, µ)w =

d∑
i=0

ŵTi ΛTi JiΛiŵi + µ

d∑
i=1

‖ŵi − Li−1ŵi−1‖2

+
(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)T
BTNR

−1BN

(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)
≥

d∑
i=0

ŵTi ΛTi JiΛiŵi ≥ (γk − bk)

d∑
i=0

‖Λiŵi‖2

Assumption 3.4

≥ (γk − bk)

(
ρk

d∑
i=1

‖ŵi‖2 + ‖ŵ0‖2
)
≥ (γk − bk) min (ρk, 1).

Combining with Proposition 3.10, we obtain

κ
(
∇2
xLA(x∗, λ∗, ψ∗, µ)

)
=
λmax

(
∇2
xLA(x∗, λ∗, ψ∗, µ)

)
λmin (∇2

xLA(x∗, λ∗, ψ∗, µ))
≤ Uk

(γk − bk) min (ρk, 1)
,

which completes the proof.
Discussion. An interpretation of Theorem 3.11 is that, under observability As-

sumption 3.4 and small nonlinearity Assumption 3.6, the condition number of the
multiple shooting problem is bounded above with the number of multiple shooting
intervals d. This prevents the exponential increase of the solution, which we define
as instability, and thus makes the multiple shooting problem computable. We note
that the upper bounds of the lemmas preceding Theorem 3.11 allow for exponential
increase within the shooting interval; but as long as observability holds, this increase
stops at the end of a shooting interval. As for Assumptions 3.6, we note that the
amount of nonlinearity needs to be upper bounded by the lower bound γk that is re-
lated to observability by Lemma 3.2. This points out that the bound on nonlinearity
in Assumption 3.6 is not absolute; it only needs to be small compared with how much
information can be found in the observations. That is, increasing the measurement
space would increase the lower eigenvalue of

∑
BTi R

−1Bi and thus γk, which in turn
would increase the prospects for Assumption 3.6 to hold.

Another important question is whether these assumptions are necessary. While
an if and only if statement between observability and the bounded condition number
of the multiple shooting Lagrangian probably does not hold, some of the assumptions
are necessary in the following way. As we can see from Appendix A, multiple shooting
without observations still results in exponential increase of the condition number and
thus of the solution. Therefore some amount of observability, or, otherwise said,
state space coverage by data, is necessary. As we can see from Appendix B, without
multiple shooting the condition number of the Hessian matrix for the single shooting
function (1.7) also increases exponentially and thus is unstable. We conclude that
some form of observability and multiple shooting are necessary to obtain a stability
result as Theorem 3.11.

4. Recursive gradient evaluation. When implementing minimization of the
augmented Lagrangian function (3.1), gradient evaluation is required. In this section,
we describe a recursive method for computing the gradient of (3.1) that fits into our
memory-saving framework.
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First we derive the gradients of the augmented Lagrangian function. Note that
θj(x̃j−1, x̃j , x̃j+1) = 0 for all Pi + 1 ≤ j ≤ Pi+1 − 1, 0 ≤ i ≤ d, and θ0(x0, x̃1) = 0.
For the first interval we obtain that

(4.1)

∇x0
LA(x, λ, ψ, µ) = L

(0)
P1

T (
∇xP1

φP1−1(x̃P1−1, x̃P1
) + λ1 − µc1(x)

)
+L

(0)
P1−1

T
(ψ1 − µg1(x)) + L

(0)
P1

T

������������
P1−1∑

j=1

θj(x̃j−1, x̃j , x̃j+1)

 + �����θ0(x0, x̃1) .

For 1 ≤ i ≤ d− 1, we obtain that

∇xPi−1
LA(x, λ, ψ, µ) = L

(Pi−1)
Pi+1

T


�����������Pi+1−1∑
j=Pi+1

θj(x̃j−1, x̃j , x̃j+1) +∇xPi+1
φPi+1−1(x̃Pi+1−1, x̃Pi+1


+ L

(Pi−1)
Pi+1

T
(λi+1 − µci+1(x)) + L

(Pi−1)
Pi+1−1

T
(ψi+1 − µgi+1(x)) + µgi(x)− ψi.

∇xPi
LA(x, λ, ψ, µ) = L

(Pi)
Pi+1

T


�����������Pi+1−1∑
j=Pi+1

θj(x̃j−1, x̃j , x̃j+1) +∇xPi+1
φPi+1−1(x̃Pi+1−1, x̃Pi+1

)


+ L

(Pi)
Pi+1

T
(λi+1 − µci+1(x)) + L

(Pi)
Pi+1−1

T
(ψi+1 − µgi+1(x)) + µci(x)− λi + βPi

(xPi
, x̃Pi+1).

For the last shooting interval, we obtain that

∇xPd−1
LA(x, λ, ψ, µ) = L

(Pd−1)
N

T


�����������N−1∑
j=Pd+1

θj(x̃j−1, x̃j , x̃j+1) + θN (x̃N−1, x̃N )


− ψd + µgd(x),

∇xPd
LA(x, λ, ψ, µ) = L

(Pd)
N

T


�����������N−1∑
j=Pd+1

θj(x̃j−1, x̃j , x̃j+1) + θN (x̃N−1, x̃N )


+ βPd

(xPd
, x̃Pd+1)− λd.

Note that the derivatives are composed of a matrix-vector product for which the
vector can be computed through one forward recursion similar to the one for the

states. The Jacobian matrix L
(Pi)
Pi+1

, however, needs to also be computed by forward

recursion, and it turns out to be dense. The computation thus would require O(J2)
storage and inhibit the low-memory advantage of our approach. Instead, we compute
the matrix-vector product using a backward recursion separately on each multiple
shooting interval, as follows. Since the evaluation procedure is the same for each
interval, we illustrate our method with the first interval (assuming it has length N ′).

The target of our algorithm is to compute vTL
(0)
N ′ for some constant vector v.

This algorithm can then be used to compute the gradient components defined in the
beginning of this section. For example, for computing the first component (4.1) we
note that we have two such matrix-vector products, where N ′ is, succesively P1 and
P1−1 and v is succesively

(
∇xP1

φP1−1(x̃P1−1, x̃P1) + λ1 − µc1(x)
)

and (ψ1 − µg1(x)).
Similar embeddings hold for all other gradient components.

The computation of vTL
(0)
N ′ proceeds as follows. The optimality recursion states

that θj(x̃j−1(x0), x̃j(x0), x̃j+1(x0)) = 0 for 1 ≤ j ≤ N ′ − 1. Differentiating with
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respect to x0 gives

L
(0)
j+1 = −(∇xj+1θj)

−1
(

(∇xj−1θj)L
(0)
j−1 + (∇xjθj)L

(0)
j

)
.(4.2)

Now we write the recursion ansatz and substitute (4.2) to obtain

vTL
(0)
N ′−l+1 = cTl L

(0)
N ′−l + bTl L

(0)
N ′−l−1 = −cTl (∇xN′−l

θN ′−l−1)−1(∇xN′−l−2
θN ′−l−1)L

(0)
N ′−l−2

+
(
bTl − cTl (∇xN′−l

θN ′−l−1)−1(∇xN′−l−1
θN ′−l−1)

)
L

(0)
N ′−l−1 := cTl+1L

(0)
N ′−l−1 + bTl+1L

(0)
N ′−l−2

for 1 ≤ l ≤ N ′−2, where cl+1 and bl+1 for l = 2, . . . , N ′−2 are defined by sought-after
recursions

cTl+1 = bTl − cTl (∇xN′−l
θN ′−l−1)−1(∇xN′−l−1

θN ′−l−1),(4.3)

bTl+1 = −cTl (∇xN′−l
θN ′−l−1)−1(∇xN′−l−2

θN ′−l−1).(4.4)

Then the matrix-vector product of interest can be expressed as vTL
(0)
N ′ = cTN ′−1L

(0)
1 +

bTN ′−1L
(0)
0 , where cN ′−1 and bN ′−1 are obtained through recursions (4.3) and (4.4). It

is a backward recursion with respect to the usage of state information xj . The initial
values for the recursion are

cT1 = −vT (∇x′N θN ′−1)−1(∇xN′−1
θN ′−1), bT1 = −vT (∇x′N θN ′−1)−1(∇xN′−2

θN ′−1),

obtained by total differentiation of θN ′−1(x̃N ′−2(x0), x̃N ′−1(x0), x̃N ′(x0)) = 0.
Since the recursion can be computed separately on each shooting interval, the

total storage does not exceed the number of multiple shooting checkpoints plus the
length of an interval, which adds up to 2d+ 1 +N/(d+ 1). We can use checkpointing
within the shooting interval to reduce the storage even further, but we do not pursue
that avenue here.

5. Numerical results. In this section, we apply our multiple shooting method
to Burgers’ equation in order to verify some of our theoretical findings. This is a
one-spatial-dimension, time-dependent, partial differential equation that exhibits both
diffusion and nonlinear advection. Since implementation of new ideas in an operational
environment is a development-intensive process, in many research references discussing
new state estimation methods Burgers’ equation is considered an important first test
of a method [2, 13, 14, 26].

The partial differential equation describing it is the following:

(5.1)
∂u

∂t
+

1

2

∂(u2)

∂x
= ν

∂2u

∂x2
; u(0, t) = u(1, t) = 0; u(x, 0) = u0(x),

where ν > 0 is viscosity coefficient and (x, t) ∈ (0, 1)× (0, T ).
We denote by umj the unknown value at grid coordinates (j∆x,m∆t) and ∆x =

1/J . We use a centered finite-difference discretization [2]:

um+1
j − umj

∆t
+

(umj+1)2 − (umj−1)2

4∆x
− ν

(∆x)2
(um+1
j+1 − 2um+1

j + um+1
j−1 ) = 0.(5.2)

To demonstrate the benefits of multiple shooting, we choose parameters for which
the single shooting method in [1] exhibits instability. To make the problem closer to
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intended application target, we also experiment with larger model error and sparser
observations, which are known to be more difficult [1]. We compare the solution of
the multiple shooting method with that obtained from directly minimizing the full-
memory function (1.3) in our examples. Note that the full-memory problem itself is
not without difficulties: it cannot be solveed to high accuracy by LBFGS in any of
our examples within 2,000 iterations. The norm of gradient of (1.3) decreases slowly
approaching the end and never gets below 10−6. In this section, we refer to the
approach of minimizing the full-memory function as 4D-Var for brevity, although our
example is (1+1)D.

5.1. Results for Burgers’ equation. We choose ∆x = 1/500, ∆t = ∆x/500,
background state xB = sin (πx), and background covariance QB = 0.01I. We gen-
erate the initial state u0 by sampling from the background distribution, namely,
u0 ∼ N (xB , QB). The rest of the states are generated by model propagation plus
a model error term, namely, ut+1 = Mt(ut) + ηt for 0 ≤ t < N , where ηt ∼ N (0, Q)
and Q = (∆t)2diag(2, 1, . . . , 1, 2) is the covariance of model error. The observations
are generated by applying Ht(ut) = sin (ut) to the underlying states U = {u0, . . . , uN}
plus a mean zero normal observation error term to mimic the action of a noisy non-
linear operator. We note that for analytic simplicity our theoretical results consider
only the linear observation operator case; but we expect the nonlinear one to be even
harder, so we could use the results to validate the outcome of multiple shooting. The
covariance of observation error is chosen as R = 0.01I. The observations are made
with a gap of 10 steps in time and space.

Our aim is to minimize the augmented Lagrangian function (3.1). For achieving
our limited-memory purpose, we use LBFGS [18] with p = 6 stored vectors. To obtain
an initial point for minimization, we first perturb the underlying state U by the error
of the background distribution. This mimics the situation where the estimation does
not start cold; in other words, initial estimates of the states do exist from previous
runs of the algorithm. On each shooting interval, we run the 4D-Var minimization
of (2.10) with LBFGS for 200 iterations to get a “warm start” state {w0, . . . , wN}.
Note that 4DVar is run only in the beginning on each interval separately on which
p trajectories are stored. The largest amount of memory required is then max{2d +
1 + N

d+1 , (p+ 1) N
d+1} state vectors. We also note that applying LBFGS to the 4DVar

problem on the entire horizon requires (p + 1)N state vectors, which is most times
d times larger. We add that in this and in the other numerical sections, it proved
difficult to find another starting strategy that will reliably produce a point from which
the multiple shooting algorithm will converge. On the other hand, this strategy does
work and does not alter the storage reduction benefits of our approach.

The checkpoints of the warm start state {w0, wP1−1, wP1 , . . . , wPd−1, wPd
} are

then used as the initial point for minimizing (3.1). The Lagrangian multiplier and

penalty parameters are initially chosen as λ
(0)
i = 0, ψ

(0)
i = 0, µ(0) = 10 and are

subject to the usual Lagrange multiplier updates [18].
In Table 5.1 we tabulate the number of checkpoint pairs d, number of stored

vectors, and percentage of storage over full-memory storage for each of the examples
in this section. For N = 800, d = 12 is the smallest number of checkpoint pairs
to make the computation stable. For each 800 ≤ N ≤ 1600, the corresponding d is
chosen so that d/

√
N = 12/

√
800. For N = 2400, d is chosen to satisfy d/N = 12/800.

We choose d ∝ N for N = 800 and 2400 to demonstrate that the method is stable
for increasing N and hence to verify Theorem 3.11. For 1000 ≤ N ≤ 1600, we choose
another relation d ∝

√
N to demonstrate empirically the consequences of a more
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N 800 1000 1200 1400 1600 2400

d 12 14 15 17 19 36
storage 434 469 525 546 560 455
storage
(p+1)N 7.8% 6.7% 6.3% 5.6% 5.0% 2.7%

Table 5.1: Number of checkpoint pairs d and maximal storage for ∆t = ∆x/500.

Fig. 5.1: Function value of (3.1)
at each iteration of LBFGS
for ∆t = ∆x/500 and N =
800, 1000, 1200, 1400, 1600, 2400.

Fig. 5.2: Gradient norm of (3.1)
at each iteration of LBFGS
for ∆t = ∆x/500 and N =
800, 1000, 1200, 1400, 1600, 2400.

aggressive checkpointing schedule.

Figure 5.1 compares the function value reduction of (3.1) at each iteration of
LBFGS for increasing time horizon. For 800 ≤ N ≤ 1600, the rate of the initial
descent (before iteration 50) becomes smaller as N increases, which indicates slower
convergence for increasing N . This means that a more aggressive checkpoint schedule
(e.g., d ∝

√
N) can lead to slower convergence. In contrast, the rate of descent for

N = 2400 is closer to that ofN = 800 and much larger than those of 1000 ≤ N ≤ 1600.
It indicates that the method not only is stable but converges with similar speed for
increasing N if d is allowed to increase linearly in N . Figure 5.2 shows the norm of
gradient at each iteration. Figure 5.3 shows the Frobenius norm of constraints ci, gi,
1 ≤ i ≤ d at each iteration. Figure 5.4 plots the Euclidean distance scaled by ∆x of
each iteration to the checkpoints of the full-memory 4D-Var solution. Note that the
distance is not scaled by the number of states and is expected to increase with d.

In this experiment, we see significant reduction (by 8–9 orders of magnitude) for
both the function value and the norm of gradient, even if the gradient did not decrease
to a point that triggered the Lagrange multiplier update. Figure 5.5 plots the solution
surface of multiple shooting and 4D-Var when N = 2400. Both of them approach a
perturbed version of the noise-free solution. Figure 5.6 compares multiple shooting
and 4D-Var solutions at fixed time and space nodes. Note that the two solutions are
both close to the underlying state so that the trajectories overlap for most of the part.
Although the problem is not solved to high accuracy as suggested by the norm of the
gradient and norm of the constraint, we conclude that it does approach the 4D-Var
solution.
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Fig. 5.3: Norm of constraint at
each iteration of LBFGS in minimiz-
ing (3.1) for ∆t = ∆x/500 and N =
800, 1000, 1200, 1400, 1600, 2400.

Fig. 5.4: Distance to 4D-Var solution
at each iteration of LBFGS in minimiz-
ing (3.1) for ∆t = ∆x/500 and N =
800, 1000, 1200, 1400, 1600, 2400.

Fig. 5.5: Exact solution of Burgers equa-
tion (top left), underlying state (top
right) and states estimated with mul-
tiple shooting and 4D-Var for ∆t =
∆x/500 and N = 2400.

Fig. 5.6: Underlying state, multiple
shooting solution and 4D-Var solution
at fixed time and space node for ∆t =
∆x/500 and N = 2400.

From the simulations we see that keeping N/d fixed (at its lowest value) results
in faster convergence compared with the alternatives. We thus conclude that the
statement of Theorem 3.11 is satisfied, although its conditions are stronger than the
case tested here (we did not enforce small nonlinearity and linearity of the observation
operator). However, for the case of smaller N (e.g., 800 to 1600), even increasing d
slower than linear in N (e.g.,

√
N) would give stable results and thus even more

memory savings at a cost of somewhat slower convergence.

5.2. Larger model error. In this section, we experiment with increased model
error. We choose ∆x = 1/500, ∆t = ∆x/1000, and a background covariance matrix
QB = 0.01I. The covariance for the model error and observation error are chosen to
be 10−3I. Observations are reduced to every 10 steps in time and every 100 steps
in space. To initialize the minimization of (3.1), we run the 4D-Var minimization on
one interval, and for the next interval we run 4D-Var constrained at the checkpoint
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Fig. 5.7: Function value of (3.1) at each
iteration of LBFGS for ∆t = ∆x/1000,
N = 500 and d = 38.

Fig. 5.8: Gradient norm of (3.1) at each
iteration of LBFGS for ∆t = ∆x/1000,
N = 500 and d = 38.

Fig. 5.9: Underlying states, solution sur-
face of multiples shooting and 4D-Var
for ∆t = ∆x/1000, N = 500 and d = 38.

Fig. 5.10: Underlying state, multiple
shooting solution and 4D-Var solution
at fixed time and space nodes for ∆t =
∆x/1000, N = 500 and d = 38.

by the solution from the previous interval.

Figure 5.7 shows the augmented Lagrangian function value decrease for N = 500
and number of checkpoint pairs d = 38. Figure 5.8 shows the norm of the gradient.
Figure 5.9 compares the full-memory 4D-Var solution with that of multiple shooting.
Increased model error results in the rough surface of the underlying states plot in
Figure 5.9. Figure 5.10 compares the 4DVar and multiple shooting solutions at fixed
time and space nodes. Note that the two solutions are close to each other so that
their trajectories overlap.

Both the function value and the norm of the gradient converge slower after some
significant initial progress. Since the norm of the gradient stalls and fails to progress
below 0.1, we do not observe either Lagrangian multiplier or penalty parameter update
during the experiments. However, both the function value and the norm of the gra-
dient achieve 4 to 6 orders of magnitude decrease, and the multiple shooting solution
approaches reasonably well the full-memory 4D-Var solution. Clearly the problem has
too much noise for the estimates to be close to the underlying state. However, the
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Fig. 5.11: Function value of (3.1) at each iteration of LBFGS for N = 300 and d = 30.

Fig. 5.12: Gradient norm of (3.1) at each
iteration of LBFGS for N = 300 and d =
30. Reference line indicates Lagrangian
multiplier updates.

approach does show that multiple shooting has a performance comparable to that of
4DVar, with much less memory, and that is the goal of this paper.

With the same parameters as those in [1, §5.2.5] but with a much longer horizon,
N = 500 as opposed to N = 110, our method is able to produce iterations of moderate
size, make nontrivial progress through minimization, and result in solutions compa-
rable to that of full-memory method for a longer time horizon. Counting the storage
during warm start, gradient evaluation, and stored vectors of LBFGS, the maximal
number of states stored at any time of the algorithm is 91 and is about 18.2% of
the total number of states N . The storage used by multiple shooting is 2.6% of the
memory used by full-memory minimization using LBFGS with 6 vectors.

5.3. Sparser observations. In this section, we consider the case where observa-
tions are made sparser in both time and space. We choose ∆x = 1/700, ∆t = ∆x/34,
and background covariance as QB = 10−3I. The covariance matrix for the model
error and observation error are Q = 10−8I and 0.01I, respectively. Observations are
made every 30 steps in time and every 200 steps in space. The initial point for mul-
tiple shooting is the same warm-start point described in the precedent section. The
parameters are the same as those in [1, §5.2.5] but with a longer horizon. We take
N = 300 as opposed to N = 32 in [1], and we take number of checkpoint pairs d = 30.
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Fig. 5.13: Norm of constraint at each
iteration of LBFGS in minimizing (3.1)
for N = 300 and d = 30.

Fig. 5.14: Distance to 4D-Var solution
at each iteration of LBFGS in minimiz-
ing (3.1) for N = 300 and d = 30.

We note that this setup is significantly far from satisfying the observability condition.
Indeed, the rank of the observability matrix in Definition 3.1 cannot be larger than
8, whereas Theorem 3.11 required a full rank, that is, 701.

For this experiment, Figure 5.11 shows the decrease of function value (3.1). Only
the first 30 iterations are plotted since the function value stalls afterward. Lagrangian
multipliers are updated at iteration 80 and 230, as shown by the vertical reference
line in Figure 5.12. Figure 5.13 shows the norm of constraints ci(x) and gi(x) at
each iteration. The horizontal reference line plotted is the norm of constraint for the
4D-Var solution. Figure 5.14 shows the Euclidean distance of each iteration to the
4D-Var solution scaled by ∆x. The decrease in the norm of the gradient is significant
(3–4 orders of magnitude), and the norm of the constraint is reduced by about 1 order
of magnitude. The distance to the 4D-Var solution shows little progress compared
with the initial guess obtained by running 4D-Var on each shooting interval, but
Figures 5.13 and 5.14 suggest the reason is primarily that our warm-starting using
4D-Var on each shooting interval produces an initial point for multiple shooting close
to the 4D-Var solution itself. On the other hand, even if in the distance to the
4D-Var solution there is not much progress beyond the warm start, the gradient is
significantly reduced, and we can evaluate the convergence properties of the method,
running LBGFS to detect whether we see an improvement, while needing less memory
than 4D-Var with LBFGS (only 3.4% of the latter’s). Therefore the multiple shooting
method provides an improvement over 4D-Var with LBFGS in terms of memory and
over single shooting in terms of stability even in this case, which is significantly outside
the applicability of Theorem 3.11.

6. Conclusions. Determining the best state estimation for dynamical systems
with model error raises new challenges in developing algorithms that reduce storage
while maintaining stability. The reason is that, as opposed to the strongly constrained
setups where only the initial state is free, all the states of a trajectory contribute to
the number of degrees of freedom.

We present an approach where the number of degrees of freedom is reduced by
the optimality conditions, as we previously introduced in [1], but now coupled with a
multiple shooting approach in an augmented Lagrangian framework to improve sta-
bility. The multiple shooting approach can use a reverse recursion scheme on each
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shooting interval to ensure that the memory requirements for computing one gradient
of the augmented Lagrangian never exceed 2d+ 1 + N

d+1 state vectors, where d+ 1 is
the number of shooting intervals and N is the length of the horizon. The full-memory
data assimilation method, on the other hand, needs to store N + 1 state vectors
when evaluating its gradient. We prove in Theorem 3.11 that under an observability
assumption and when the nonlinearity is small relative to the parameter character-
izing the observability, the condition number of the augmented Lagrangian matrix is
bounded above, irrespective of the number of shooting intervals. This ensures that
the multiple shooting approach is stable: the method does not exhibit exponentially
increasing error for an increasing size of the assimilation interval. This is a feature
shared by neither the single shooting approach derived from [1] nor by the multi-
ple shooting approach without observations. Therefore both multiple shooting and
sufficiently informative observations appear to be necessary for stability to occur.

Our numerical simulations on cases described in [1] validate these points. First,
for all of them the single shooting method showed an exponential increase of the
solution and ran into overflow. For both small model error and larger model error
setups, the multiple shooting approach converges to a solution close to that of the
full-memory method while using only a fraction of the memory needed by the latter,
never more than 8%. To achieve convergence, we needed to use the full-memory
approach but only on the smaller, shooting intervals to create a good initial point for
our multiple shooting approach. In the case of sparse observations, this initialization
strategy was responsible for much of the improvement of the method in terms of
distance to the full-memory 4D-Var solution, while using only 3.4% of the memory of
the latter. But with that initialization strategy, which does not alter our maximum
memory count, we reliably obtained reductions in the augmented Lagrangian gradients
and solutions close to the ones of the full-memory approach. We are not aware of
another optimization-based approach to reduce the memory requirements of weakly
constrained data assimilation approaches. From the numerical experiments and the
theory, we conclude that, particularly in the data-rich case, the multiple shooting
method appears promising at reducing memory and producing a point of a quality
comparable to that of the full-memory case without the instability of the previous
single shooting approach.

We plan to explore new initialization strategies that empirically appear to be
important for the robustness of the overall method. The method also has good poten-
tial for paralellism, although in that case the memory saving is less of a benefit. An
interesting question would be to tie the stability of multiple shooting to a condition
requiring enough information in the observations but weaker than observability on
one shooting interval. We have observed the good behavior of the multiple shooting
aproach in several such instances, but it is unclear how such a condition might be
expressive enough and practical.
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[24] Yannick Trémolet, Accounting for an imperfect model in 4d-var, Quarterly Journal of the
Royal Meteorological Society, 132 (2006), pp. 2483–2504.

[25] , Model-error estimation in 4d-var, Quarterly Journal of the Royal Meteorological Soci-
ety, 133 (2007), pp. 1267–1280.

[26] Francesco Uboldi and Masafumi Kamachi, Time-space weak-constraint data assimilation
for nonlinear models, Tellus A, 52 (2000), pp. 412–421.

[27] Milija Zupanski, Dusanka Zupanski, Tomislava Vukicevic, Kenneth Eis, and
Thomas Vonder Haar, Cira/csu four-dimensional variational data assimilation system,
Monthly Weather Review, 133 (2005), pp. 829–843.



26 W. XU AND M. ANITESCU

Appendix A. Multiple shooting with zero observability. In this section,
we prove that for a class of linear systems, under zero observability, the condition
number of the Hessian matrix of augmented Lagrangian has an exponential lower
bound. Hence the multiple shooting method is not stable if there are no observations.

We consider the model propagation mapping to be time independent, that is,
M(xj) = Axj , and Bj = 0 for 0 ≤ j ≤ N . We assume A has at least one real
eigenvalue with modulus strictly larger than 1. With this model specification, Ji are
identical for all 1 ≤ i ≤ d and so are Λi. For simplicity, we denote them respectively
as J1 and Λ1 for 1 ≤ i ≤ d. The expanded forms of J1 and Λ1 are

J1 =



ATQ−1A −ATQ−1 0

−Q−1A ATQ−1A+Q−1 . . .

. . .
. . .

. . . ATQ−1A+Q−1 −ATQ−1

0 −Q−1A Q−1


,

Λ1 =


0 I

−QA−TQ−1A A+QA−TQ−1

...
...

L
(Pi−1)
Pi+1

(xPi−1, xPi
) L

(Pi)
Pi+1

(xPi−1, xPi
)

 .
For p = Pi, Pi−1, adapting the optimality recursions (2.7) to the linear system under

consideration and applying the chain rule, we have that the recursion of L
(p)
Pi+j

for
0 ≤ j ≤ k − 1 is

L
(p)
Pi+j+1 = (A+QA−TQ−1)L

(p)
Pi+j

−QA−TQ−1AL
(p)
Pi+j−1.(A.1)

Denote L1 to be the last two block rows of Λ1.

Lemma A.1. Denote Λ̂ = Λ1

[
I
A

]
. Then, J1Λ̂ = 0.

Proof. We first prove that for 1 ≤ j ≤ k, the jth block of Λ̂ is (Λ̂)j = Aj by
induction. It is evident for j = 1, 2. Suppose it is true for all j ≤ j0, 2 ≤ j0 ≤ k − 1.
Then by recursion (A.1),

(Λ̂)j0+1 = L
(Pi−1)
Pi+j0

+ L
(Pi)
Pi+j0

A

= (A+QA−TQ−1)(L
(Pi−1)
Pi+j0−1 + L

(Pi)
Pi+j0−1A)

− (QA−TQ−1A)(L
(Pi−1)
Pi+j0−2 + L

(Pi)
Pi+j0−2A)

= (A+QA−TQ−1)(Λ̂)j0 − (QA−TQ−1A)(Λ̂)j0−1

= Aj0+1.

A direct multiplication completes the proof.
Proposition A.2. Let |λ| > 1, λ ∈ R be an eigenvalue of A. Denote λk = λk−1.

Then, for the linear system under consideration, we have that

κ
(
∇2
xLA(x∗, λ∗, ψ∗, µ)

)
≥
λmin(Q−1

B )

µ
|λk|2(d−1).
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Proof. For any s = (s1, . . . , s2d+1) ∈ R(2d+1)J , denote ŝ0 = s1, ŝi = (s2i, s2i+1)
for 1 ≤ i ≤ d. Then from Theorem 2.2 (b) we have that

sT∇2
xLA(x∗, λ∗, ψ∗, µ)s = sT1 ΛT0 J0Λ0s1 +

d∑
i=1

ŝTi ΛT1 J1Λ1ŝi(A.2)

+ µ‖ŝ1 − L0s1‖2 + µ

d∑
i=2

‖ŝi − L1ŝi−1‖2.

Consider s = (s1, . . . , s2d+1) ∈ R(2d+1)J such that s1 = 0, s2i = λi−1
k s2, s2i+1 =

λs2i for 1 ≤ i ≤ d, and let ‖s2‖ = 1 be the eigenvector of A corresponding to λ, that

is, As2 = λs2. Then ŝi =

[
I
A

]
s2i for 1 ≤ i ≤ d, which gives that

ŝTi ΛT1 J1Λ1ŝi = sT2iΛ̂
TJ1Λ̂s2i = 0,(A.3)

where the last equality follows from Lemma A.1.

Since L1 consists of the last two block rows of Λ1, we have that L1

[
I
A

]
=

[
Ak−1

Ak

]
.

Hence by the definition of s for 2 ≤ i ≤ d, we obtain that

ŝi − L1ŝi−1 =

[
I
A

]
s2i −

[
Ak−1

Ak

]
s2(i−1) = 0.(A.4)

Using (A.3) and (A.4) in (A.2), we obtain that

sT∇2
xLA(x∗, λ∗, ψ∗, µ)s = µ‖ŝ1‖2 ≤ µ(‖s2‖2 + |λ|2‖s2‖2) = µ(1 + |λ|2).

From the definition of s, we have that

‖s‖2 =

d∑
i=1

‖s2i‖2 + ‖s2i+1‖2 = (1 + |λ|2)

d∑
i=1

|λk|2(i−1) ≥ (1 + |λ|2)|λk|2(d−1).

Hence we have that

(A.5)
λmin(∇2

xLA(x∗, λ∗, ψ∗, µ)) ≤ sT∇2
xLA(x∗, λ∗, ψ∗, µ)s

‖s‖2

≤ µ|λk|−2(d−1).

On the other hand, let t = (t1, . . . , t2d+1) ∈ R(2d+1)J be such that ‖t1‖ = 1 and ti = 0
for all 2 ≤ i ≤ 2d + 1. J0 differs from J1 by only the (1,1)th block element so that
(J0)(1,1) = (J1)(1,1) +Q−1

B . Then

tT∇2
xLA(x∗, λ∗, ψ∗, µ)t = tT1 ΛT0 J0Λ0t1 + µtT1 L

T
0 L0t1

≥ tT1 ΛT0 J0Λ0t1 ≥ λmin(Q−1
B ).

Hence we have that

(A.6)
λmax(∇2

xLA(x∗, λ∗, ψ∗, µ)) ≥ tT∇2
xLA(x∗, λ∗, ψ∗, µ)t

‖t‖2

≥ λmin(Q−1
B ).
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Combining equation (A.5) and (A.6) completes the proof.

Appendix B. Single shooting condition number. In this section, we prove
that for a certain class of linear systems that satisfy the observability condition, the
condition number of the Hessian matrix for the single shooting function (1.7) has an
exponential lower bound in N . Hence the single shooting method is not stable for
this class of systems.

We consider linear time-independent systems such thatM(xi) = Axi andH(xi) =
Bxi. Denote C1 = QA−TQ−1 + A + QA−TBTR−1B and C2 = QA−TQ−1

B + A +
QA−TBTR−1B. We have the following.

Proposition B.1. For linear systems satisfying
(a) C1C2 − I = C2

2 ,
(b) there exist eigenvalues λ1 and λ2 of C2 such that |λ1| > 1 and |λ1| > |λ2| 6= 0,
(c) QA−TQ−1A = IJ .

We have

κ
(
∇2
x0

Γ̂(x∗0)
)
≥

C
N

∣∣∣λ1

λ2

∣∣∣2(N−1)

, |λ2| ≥ 1

C
N |λ1|2(N−1), |λ2| < 1

for some constant C > 0, where x∗0 is the first component of a local minimizer of
Γ(x0:N ) (1.3).

Note: At the end of this section, we give an example of a linear system satis-
fying conditions (a)–(c) with observation matrix B being full rank, namely, with full
observability.

Proof. It is shown in [1, Theorem 3] that x∗0 is a local minimizer of Γ̂(x0) and
that

∇x0 Γ̂(x∗0) = θ0(x∗0, λ1) +

N−1∑
j=1

L
(0)
j

T
θj(λj−1, λj , λj+1) + L

(0)
N

T
θN (λN−1, λN ),(B.1)

where L
(0)
j , 0 ≤ j ≤ N are as defined in Definition 2.1(b).

Applying the chain rule and the optimality conditions (1.4), (1.5), and (1.6) to
(B.1), we obtain that the Hessian matrix for the single shooting function (1.7) is

∇2
x0

Γ̂(x∗0) = ΛTs JsΛs,(B.2)

where Λs is (N + 1)J × J dimensional and Js is (N + 1)J × (N + 1)J dimensional.
They are defined as

ΛTs =
[
L

(0)
0

T
L

(0)
1

T
. . . L

(0)
N

T
]

Js =



Q−1
B +BTR−1B +ATQ−1A −ATQ−1 0

−Q−1A C3 +ATQ−1A
. . .

. . .
. . .

. . . C3 +ATQ−1A −ATQ−1

0 −Q−1A C3


,

where C3 := Q−1 + BTR−1B. Denote dj(x) =

[
L

(0)
j x

L
(0)
j−1x

]
, for 1 ≤ j ≤ N . Then, for
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1 ≤ j ≤ N − 1, from the recursion for the derivatives (3.8) and (3.9), we have that

dj+1(x) =

[
QA−TQ−1 +A+QA−TBTR−1B −QA−TQ−1A

IJ 0

]
dj(x)

=

[
QA−TQ−1 +A+QA−TBTR−1B −IJ

IJ 0

]
dj(x)

=

[
C1 −IJ
IJ 0

]
dj(x) := Ddj(x),

and

d1(x) =

[
QA−TBTR−1B +A+QA−TQ−1

B

IJ

]
x

=

[
C2

IJ

]
x := Ĉ2x.

For any eigenvector v of C2 with corresponding eigenvalue λ, we have from condi-
tion (a) that Dd1(v) = λd1(v). Hence for 1 ≤ j ≤ N , we have that dj(v) = λj−1d1(v).

Denoting Q̃ = (I,−A)TQ−1(I,−A) and using (B.2), we have that

v∗∇2
x0

Γ̂(x∗0)v = v∗ΛTs JsΛsv

= v∗Q−1
B v +

N∑
j=0

(L
(0)
j v)∗BTR−1B(L

(0)
j v)

+

N−1∑
j=0

(L
(0)
j+1v −AL

(0)
j v)∗Q−1(L

(0)
j+1v −AL

(0)
j v)

= v∗Q−1
B v +

N∑
j=0

(L
(0)
j v)∗BTR−1B(L

(0)
j v) +

N∑
j=1

dj(v)∗Q̃dj(v)

= v∗Q−1
B v +

N∑
j=0

(L
(0)
j v)∗BTR−1B(L

(0)
j v) + v∗ĈT2 Q̃Ĉ2v

N∑
j=1

|λ|2(j−1),

where ĈT2 Q̃Ĉ2 = (Q−1
B +BTR−1B)TA−1QA−T (Q−1

B +BTR−1B) is positive definite.

Let v1 and v2 be eigenvectors of C2 corresponding respectively to λ1 and λ2 as
defined in condition (b), and ‖v1‖ = 1, ‖v2‖ = 1. Then we have

(B.3)

λmax(∇2
x0

Γ̂(x∗0)) ≥
v∗1∇2

x0
Γ̂(x∗0)v1

‖v1‖2

≥ v∗1ĈT2 Q̃Ĉ2v1

N∑
j=1

|λ1|2(j−1)

≥ λmin(ĈT2 Q̃Ĉ2)|λ1|2(N−1)



30 W. XU AND M. ANITESCU

and

(B.4)

λmin(∇2
x0

Γ̂(x∗0)) ≤
v∗2∇2

x0
Γ̂(x∗0)v2

‖v2‖2

≤ λmax(Q−1
B ) + λmax(BTR−1B)‖d1(v2)‖2

N∑
j=1

|λ2|2(j−1)

+ λmax(BTR−1B) + v∗2Ĉ
T
2 Q̃Ĉ2v2

N∑
j=1

|λ2|2(j−1)

≤ 2U + 2U

N∑
j=1

|λ2|2(j−1)

≤

{
4UN |λ2|2(N−1), |λ2| ≥ 1

4UN, |λ2| < 1
,

where U = max
(
λmax(Q−1

B ), λmax(BTR−1B)λmax(ĈT2 Ĉ2), λmax(BTR−1B), λmax(ĈT2 Q̃Ĉ2)
)

.

Equations (B.3) and (B.4) give that

κ
(
∇2
x0

Γ̂(x∗0)
)
≥

λmin(ĈT
2 Q̃Ĉ2)

4UN

∣∣∣λ1

λ2

∣∣∣2(N−1)

, |λ2| ≥ 1

λmin(ĈT
2 Q̃Ĉ2)

4UN |λ1|2(N−1), |λ2| < 1
.

Letting C =
λmin(ĈT

2 Q̃Ĉ2)
4U completes the proof.

Consider an example for which Q = A = diag(2, 1, . . . , 1) for all 0 ≤ j ≤ N − 1,
QB = diag(4, 3

2 , . . . ,
3
2 ), and BTR−1B = diag( 7

4 ,
4
3 , . . . ,

4
3 ) such that B is full rank.

Then, C1 = diag( 17
4 ,

10
3 , . . . ,

10
3 ) and C2 = diag(4, 3, . . . , 3) so that all three conditions

in Proposition B.1 are satisfied. For this example, even with full observability, single
shooting is not stable.
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